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Abstract

Oxygen is a valuable commodity in space. Substantial savings have been projected for future

missions if oxygen could be produced on the moon from local resources.

Some of the most promising approaches to extract oxygen from lunar resources involve

electrochemical oxygen generation. In a straight-forward concept called "magma electrolysis",

suitable oxides (silicates) are molten at 1300-1500 °C and the melt electrolyzed. Residual melt can

be discarded after partial electrolysis. Alternatively, lunar soil may be dissolved in a molten salt and

electrolyzed. In this approach, temperatures are lower and melt conductances higher, but

electrolyte constituents need to be preserved. Both possibilities are being studied in the laboratory.

In a different approach, ilmenite is reduced by hydrogen and the resulting water electrolyzed

(Carbotek Process TM).

Although know-how from terrestrial technology can be applied, the process task is unconventional

and requires many innovative solutions. Time and effort needed for successful development should

not be underestimated.

Oxygen from Lunar Resources

Due to the effort necessary to transport it there from Earth, oxygen is a precious commodity in

space. Oxygen is needed for life support and, in larger amounts, also for propulsion. In situ

preparation of oxygen from local resources in space can reduce costs for future missions in

space. The lunar surface is an appropriate site to establish an oxygen manufacturing capability.

Molecular oxygen may be prepared from oxides by electrolysis. In the absence of volatile oxides,

solid oxides may be used. Such oxides are readily available on the lunar surface, mainly as silicates

of various compositions. Lunar soil may be regarded as an already adequately comminuted raw

material. Highland soils are anorthositic, feldspar-like, with compositions similar to the one given as

an example in Table 1. Soils of the mare region have a more basaltic character and are

represented in Table 1 by a composition indicated by Washington University authors [ 1] as repre-

sentative.

In the electrolytic decomposition of the oxides, oxygen gas is produced at the positive electrode,

the anode. The reaction may be formulated as follows:

Me O - 2y e- ----> x Me c2y_×_ ÷ y/20_ .
x y

Metallic components, meanwhile, are reduced at the cathode:



Table 1. Compositionsof LunarSoils

AnorthositicSoil.[.__22] Basaltic Soil [ 1 ]

SiO 2 449 wt% 46.2 wt%

AI203 276 wt% 126 wt%

FeO 5.03 wt% 174 wt%

TiO 0.55 wt% 28 wt%
2

MgO 535 wt% 10.4 wt%

CaO 158 wt% 10.5 wt%

Na O 039 wt%
2

K O 0.10 wt%
2

Me O + 2y e- ----> x Me + y O 2- .
× y

Various metals are reduced with different ease. Theoretical decomposition potentials for the

oxides can be calculated from thermodynamic data, but they are modified as the oxides combine to

mixed oxide compounds. For the major components of the oxides discussed, the following order

of decreasing (more negative) cathodic deposition potential appears to exist:

Fe > Ti > Si > AI > Mg > Na > Ca

The cathodic products may be of no substantial interest and may even be discarded Silicon and

aluminum, on the other hand, may be the products of major interest. Depending on the desirability

to produce and collect the metals, the process may be refined to various degree [3], as illustrated

by Figure I

Figure 1. Refinement of Lunar Molten Salt Electrolysis Depending
on Metallic Products Desired



Two major approachesto the electrolysisof lunar oxides are being explored: (1) a molten silicate
electrolysis in which the oxides are melted and the melt electrolyzed, and (2) a fused salt
electrolysisin which the oxides are dissolvedin a moltensalt (flux) and electrolyzed.

Electrolysisof Molten Silicates

Lunar raw material may be molten and electrolyzed at temperatures of 1400 - 1500 °C This can

be accomplished in a batch mode, whereby the electrolyte composition changes during the course

of electrolysis; at a certain point, the residual melt is discarded. Such an approach was discussed

in an earlier publication by Washington University authors [1].

Alternatively, the electrolysis may be conducted in a quasi-continuous mode. Fresh ore is added

to an electrolyte which represents partially electrolyzed raw material. While components that

reduce most easily are continuously electrolyzed, electrolyte is gradually removed from the system.

This approach is represented in Figure 2
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A cell design for such an electrolysis, with a molten silicon-iron cathode, has been suggested by

McCullough and Mariz [4].

Electrolyte conductivities vary significantly with composition. Haskin et al [ 1] give the following

regression equation (for 1425 °C):

In X = 5.738 - 12.6[SIO 2] - 10.0[AIOI. s] - 3.7[TIO 2] + 1.89[FEO] + 0.07[MgO] - 1.25[CAO]

(X in ohmlcml; symbols for oxides stand for mole fractions).

High iron oxide contents obviously lead to relatively high conductances. Excessive silicon contents

result in low conductivities. In practice, one may expect to be operating with electrolytes of

specific conductivities of about 0.3 ohm-lcm -I.

So-called "magma electrolysis" experiments have been conducted by L. A. Haskin and his co-



workers at WashingtonUniversity. They gatheredessentialbasic dataon the electrolyteproperties
and electrolyzed small molten charges suspendedin platinumwire loops. Recently,experiments
were conducted in small spinel crucibles. EMECConsultantsstarted investigationsusing alumina
crucibles,a platinumanodeand a graphitecathode. Cathodicdepositswill be examinedand several
anodecandidatesand other materialstested in future work.

Electrolysis in Molten Salt

Lunarsoil may be dissolvedin a suitableelectrolyte of molten fluorides and electrolyzedat tem-
peratures of about 1000 °C. It is important that all componentsadded to the electrolyte are
removed again from the system. In the approach envisionedby EMECConsultants,this is ac-
complishedby complete electrolysis (separationof some componentsas undecomposedoxides
would also be possible). Electrolysisconditions are such that the componentmost difficult to
decomposereacts. As this component is calcium,a cathode potential, therefore, is maintained
which permits reduction of calcium;the other metalsare co-reduced at the rate they reach the
cathode,i.e at the masstransport limitedrate. This approachhas,thus, been calleda "calcium-plus
electrolysis"

Calcium fluoride, with a very high theoretical decomposition voltage, would be a desirable
electrolyte,but its meltingpoint is high Also metal solubilitiesleadingto current efficiency losses
would be excessive. A mixture of calciumfluoride and lithiumfluoride is preferable as electrolyte,
as added lithium fluoride reduces operating temperatures. The presence of lithium fluoride,
however, leads to a cathodic co-deposition of lithium which has to be recovered in an auxiliary
metalseparationstep, presumablyby vacuumdistillation.

Oxygenis evolved at the anode as a gas Some electrolyte components will evaporate into this

gas but may be retained by process feed through which the off-gases are bled, similar to the

recovery of fluorine values in the fume treatment of commercial aluminum production Traces of

sulfur dioxide may remain with the oxygen and should not affect the performance of the oxygen

as propellant. It may be possible to obtain oxygen feasible for life support by simple reevapora-

tion of liquefied oxygen

The envisioned molten salt electrolysis process to produce oxygen is summarized in Figure 3

The development of this process actually started with work on a concept to produce silicon and

aluminum from lunar resources [5]. In a stepwise reduction process, silicon of the anorthite feed

is reduced chemically by aluminum metal. Aluminum oxide and calcium oxide are electrolyzed in a

second major process step. Auxiliary process steps involve the beneficiation of lunar soil by mag-

netic separation to yield a good-quality anorthite (CaAI2Si20 a) feed, the separation of silicon from a

hypereutectic Si-AI alloy, the purification of oxygen by exposing the cell gases to feed ore, and

the separation of lithium from the cathode metal.

Other Approaches

Ilmenite reduction with hydrogen is practiced in the Carbotek process [6]. This process includes

an electrochemical step, as the water produced by the reaction of hydrogen with ferrous oxide is

electrolyzed An electrolysis at high temperatures is proposed but has not been explored in

Carbotek's experimental work.
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Figure 3 "Calcium plus Electrolysis" to Produce Oxygen From Lunar Soil

Concluding Remarks

There does not appear to be a clearly favored process to produce lunar oxygen at this time All

approaches discussed above include unconventional process elements with various degree of uncer-

tainty regarding their technical feasibility [7] Additional research is required. Materials stability

problems need to be addressed In particular, a suitable anode for the evolution of oxygen needs

to be identified Such work is in progress at EMEC Consultants

After investigating the chemistry of individual process steps, processes shall be demonstrated on

the bench scale It is estimated that 8 to 12 years of additional work wdl be required before a

successful pilot demonstration may be undertaken [8] Time periods for the development of new

processes or process variants in terrestrial extractive metallurgy, which is directly related to the

discussed approaches, are considerable Time and effort necessary to develop a lunar oxygen ex-

traction process should not be underestimated
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